Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.666
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1157-1169, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658155

RESUMO

Cytokinin response factors (CRFs), as unique transcription factors in plants, play crucial roles in regulating development, phytohormone signaling pathway, and stress responses. In this study, we identified nine CRF genes from the rice genome by conducting a BLAST analysis using the protein sequences of twelve Arabidopsis AtCRFs. These genes are located on seven different rice chromosomes. We conducted a comprehensive analysis of the conserved domains, physicochemical properties, secondary structures, and phylogenetic relationships of rice CRF proteins using various online tools and local software. Additionally, we analyzed the exon-intron structures and cis-acting elements of OsCRFs, and found an abundance of elements relevant to phytohormone response and stress response on the promoters of rice CRF genes. Spatial-temporal expression pattern analysis revealed that four of the OsCRFs were barely expressed in all tested samples, while the other five were highly expressed in the leaf, panicle, or seed of rice. Microarray data showed that OsCRF genes are regulated to varying degrees by abscisic acid, auxin, cytokinin, and jasmonic acid. Furthermore, through analyzing the RNA-seq data, we found that OsCRFs are primarily involved in plant response to temperature stress (chilling and heat), with several OsCRFs also implicated in drought response, while hardly any respond to salt stress. This study provides an important basis for the functional characterization of rice CRF family genes.


Assuntos
Citocininas , Regulação da Expressão Gênica de Plantas , Oryza , Filogenia , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Família Multigênica , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo
2.
Plant Physiol Biochem ; 209: 108520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522131

RESUMO

In Arabidopsis, the plastidial isoform of phosphoglucose isomerase, PGI1, mediates growth and photosynthesis, likely due to its involvement in the vascular production of cytokinins (CK). To examine this hypothesis, we characterized pgi1-2 knockout plants impaired in PGI1 and pgi1-2 plants specifically expressing PGI1 in root tips and vascular tissues. Moreover, to investigate whether the phenotype of pgi1-2 plants is due to impairments in the plastidial oxidative pentose phosphate pathway (OPPP) or the glycolytic pathway, we characterized pgl3-1 plants with reduced OPPP and pfk4pfk5 knockout plants impaired in plastidial glycolysis. Compared with wild-type (WT) leaves, pgi1-2 leaves exhibited weaker expression of photosynthesis- and 2-C-methyl-D-erythritol 4-P (MEP) pathway-related proteins, and stronger expression of oxidative stress protection-related enzymes. Consistently, pgi1-2 leaves accumulated lower levels of chlorophyll, and higher levels of tocopherols, flavonols and anthocyanins than the WT. Vascular- and root tip-specific PGI1 expression countered the reduced photosynthesis, low MEP pathway-derived CK content, dwarf phenotype and the metabolic characteristics of pgi1-2 plants, reverting them to WT-like levels. Moreover, pgl3-1, but not pfk4pfk5 plants phenocopied pgi1-2. Histochemical analyses of plants expressing GUS under the control of promoter regions of genes encoding plastidial OPPP enzymes exhibited strong GUS activity in root tips and vascular tissues. Overall, our findings show that root tip and vascular PGI1-mediated plastidial OPPP activity affects photosynthesis and growth through mechanisms involving long-distance modulation of the leaf proteome by MEP pathway-derived CKs.


Assuntos
Arabidopsis , Via de Pentose Fosfato , Antocianinas/metabolismo , Fotossíntese , Arabidopsis/metabolismo , Citocininas/metabolismo
3.
Plant Signal Behav ; 19(1): 2329841, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38521996

RESUMO

Nitric oxide (NO) and cytokinins (CKs) are known for their crucial contributions to plant development, growth, senescence, and stress response. Despite the importance of both signals in stress responses, their interaction remains largely unexplored. The interplay between NO and CKs emerges as particularly significant not only regarding plant growth and development but also in addressing plant stress response, particularly in the context of extreme weather events leading to yield loss. In this review, we summarize NO and CKs metabolism and signaling. Additionally, we emphasize the crosstalk between NO and CKs, underscoring its potential impact on stress response, with a focus on hypoxia tolerance. Finally, we address the most urgent questions that demand answers and offer recommendations for future research endeavors.


Assuntos
Citocininas , Óxido Nítrico , Citocininas/metabolismo , Óxido Nítrico/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo , Transdução de Sinais
4.
Planta ; 259(5): 93, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509429

RESUMO

MAIN CONCLUSION: dnal7, a novel allelic variant of the OsHSP40, affects rice plant architecture and grain yield by coordinating auxins, cytokinins, and gibberellic acids. Plant height and leaf morphology are the most important traits of the ideal plant architecture (IPA), and discovering related genes is critical for breeding high-yield rice. Here, a dwarf and narrow leaf 7 (dnal7) mutant was identified from a γ-ray treated mutant population, which exhibits pleiotropic effects, including dwarfing, narrow leaves, small seeds, and low grain yield per plant compared to the wild type (WT). Histological analysis showed that the number of veins and the distance between adjacent small veins (SVs) were significantly reduced compared to the WT, indicating that DNAL7 controls leaf size by regulating the formation of veins. Map-based cloning and transgenic complementation revealed that DNAL7 is allelic to NAL11, which encodes OsHSP40, and the deletion of 2 codons in dnal7 destroyed the His-Pro-Asp (HPD) motif of OsHSP40. In addition, expression of DNAL7 in both WT and dnal7 gradually increased with the increase of temperature in the range of 27-31 °C. Heat stress significantly affected the seedling height and leaf width of the dnal7 mutant. A comparative transcriptome analysis of WT and dnal7 revealed that DNAL7 influenced multiple metabolic pathways, including plant hormone signal transduction, carbon metabolism, and biosynthesis of amino acids. Furthermore, the contents of the cytokinins in leaf blades were much higher in dnal7 than in the WT, whereas the contents of auxins were lower in dnal7. The contents of bioactive gibberellic acids (GAs) including GA1, GA3, and GA4 in shoots were decreased in dnal7. Thus, DNAL7 regulates rice plant architecture by coordinating the balance of auxins, cytokinins, and GAs. These results indicate that OsHSP40 is a pleiotropic gene, which plays an important role in improving rice yield and plant architecture.


Assuntos
Giberelinas , Oryza , Oryza/metabolismo , Alelos , Melhoramento Vegetal , Citocininas/metabolismo , Grão Comestível/genética , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo
5.
Planta ; 259(5): 96, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517516

RESUMO

MAIN CONCLUSION: OsRR26 is a cytokinin-responsive response regulator that promotes phytohormone-mediated ROS accumulation in rice roots, regulates seedling growth, spikelet fertility, awn development, represses NADPH oxidases, and negatively affects salinity tolerance. Plant two-component systems (TCS) play a pivotal role in phytohormone signaling, stress responses, and circadian rhythm. However, a significant knowledge gap exists regarding TCS in rice. In this study, we utilized a functional genomics approach to elucidate the role of OsRR26, a type-B response regulator in rice. Our results demonstrate that OsRR26 is responsive to cytokinin, ABA, and salinity stress, serving as the ortholog of Arabidopsis ARR11. OsRR26 primarily localizes to the nucleus and plays a crucial role in seedling growth, spikelet fertility, and the suppression of awn development. Exogenous application of cytokinin led to distinct patterns of reactive oxygen species (ROS) accumulation in the roots of both WT and transgenic plants (OsRR26OE and OsRR26KD), indicating the potential involvement of OsRR26 in cytokinin-mediated ROS signaling in roots. The application of exogenous ABA resulted in varied cellular compartmentalization of ROS between the WT and transgenic lines. Stress tolerance assays of these plants revealed that OsRR26 functions as a negative regulator of salinity stress tolerance across different developmental stages in rice. Physiological and biochemical analyses unveiled that the knockdown of OsRR26 enhances salinity tolerance, characterized by improved chlorophyll retention and the accumulation of soluble sugars, K+ content, and amino acids, particularly proline.


Assuntos
Arabidopsis , Oryza , Oryza/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Tolerância ao Sal/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Plantas Geneticamente Modificadas/metabolismo , Citocininas/metabolismo , Plântula/genética , Plântula/metabolismo , Arabidopsis/genética , Salinidade , Regulação da Expressão Gênica de Plantas
6.
Cells ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474328

RESUMO

Adaptation to changes in the environment depends, in part, on signaling between plant organs to integrate adaptive response at the level of the whole organism. Changes in the delivery of hormones from one organ to another through the vascular system strongly suggest that hormone transport is involved in the transmission of signals over long distances. However, there is evidence that, alternatively, systemic responses may be brought about by other kinds of signals (e.g., hydraulic or electrical) capable of inducing changes in hormone metabolism in distant organs. Long-distance transport of hormones is therefore a matter of debate. This review summarizes arguments for and against the involvement of the long-distance transport of cytokinins in signaling mineral nutrient availability from roots to the shoot. It also assesses the evidence for the role of abscisic acid (ABA) and jasmonates in long-distance signaling of water deficiency and the possibility that Lipid-Binding and Transfer Proteins (LBTPs) facilitate the long-distance transport of hormones. It is assumed that proteins of this type raise the solubility of hydrophobic substances such as ABA and jasmonates in hydrophilic spaces, thereby enabling their movement in solution throughout the plant. This review collates evidence that LBTPs bind to cytokinins, ABA, and jasmonates and that cytokinins, ABA, and LBTPs are present in xylem and phloem sap and co-localize at sites of loading into vascular tissues and at sites of unloading from the phloem. The available evidence indicates a functional interaction between LBTPs and these hormones.


Assuntos
Ácido Abscísico , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Plantas/metabolismo , Hormônios , Lipídeos
7.
J Hazard Mater ; 468: 133134, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387171

RESUMO

The rising heavy metal contamination of soils imposes toxic impacts on plants as well as other life forms. One such highly toxic and carcinogenic heavy metal is hexavalent chromium [Cr(VI)] that has been reported to prominently retard the plant growth. The present study investigated the potential of silicon (Si, 10 µM) to alleviate the toxicity of Cr(VI) (25 µM) on roots of wheat (Triticum aestivum L.) seedlings. Application of Si to Cr(VI)-stressed wheat seedlings improved their overall growth parameters. This study also reveals the involvement of two phytohormones, namely auxin and cytokinin and their crosstalk in Si-mediated mitigation of the toxic impacts of Cr(VI) in wheat seedlings. The application of cytokinin alone to wheat seedlings under Cr(VI) stress reduced the intensity of toxic effects of Cr(VI). In combination with Si, cytokinin application to Cr(VI)-stressed wheat seedlings significantly minimized the decrease induced by Cr(VI) in different parameters such as root-shoot length (10.8% and 13%, respectively), root-shoot fresh mass (11.3% and 10.1%, respectively), and total chlorophyll and carotenoids content (13.4% and 6.8%, respectively) with respect to the control. This treatment also maintained the regulation of proline metabolism (proline content, and P5CS and PDH activities), ascorbate-glutathione (AsA-GSH) cycle and nutrient homeostasis. The protective effect of Si and cytokinin against Cr(VI) stress was minimized upon supplementation of an inhibitor of polar auxin transport- 2,3,5-triiodobenzoic acid (TIBA) which suggested a potential involvement of auxin in Si and cytokinin-mediated mitigation of Cr(VI) toxicity. The exogenous addition of a natural auxin - indole-3-acetic acid (IAA) confirmed auxin is an active member of a signaling cascade along with cytokinin that aids in Si-mediated Cr(VI) toxicity alleviation as IAA application reversed the negative impacts of TIBA on wheat roots treated with Cr(VI), cytokinin and Si. The results of this research are also confirmed by the gene expression analysis conducted for nutrient transporters (Lsi1, CCaMK, MHX, SULT1 and ZIP1) and enzymes involved in the AsA-GSH cycle (APX, GR, DHAR and MDHAR). The overall results of this research indicate towards possible induction of a crosstalk between cytokinin and IAA upon Si supplementation which in turn stimulates physiological, biochemical and molecular changes to exhibit protective effects against Cr(VI) stress. Further, the information obtained suggests probable employment of Si, cytokinin and IAA alone or combined in agriculture to maintain plant productivity under Cr(VI) stress and data regarding expression of key genes can be used to develop new crop varieties with enhanced resistance against Cr(VI) stress together with its reduced load in seedlings.


Assuntos
Plântula , Ácidos Tri-Iodobenzoicos , Triticum , Triticum/metabolismo , Silício/farmacologia , Citocininas/farmacologia , Citocininas/metabolismo , Antioxidantes/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Ácidos Indolacéticos/farmacologia , Prolina/metabolismo , Prolina/farmacologia , Estresse Oxidativo
8.
Physiol Plant ; 176(1): e14195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332400

RESUMO

This review aims to elucidate the intricate effects and mechanisms of terahertz (THz) wave stress on Pinellia ternata, providing valuable insights into plant responses. The primary objective is to highlight the imperative for future research dedicated to comprehending THz wave impacts across plant structures, with a specific focus on the molecular intricacies governing root system structure and function, from shoots to roots. Notably, this review highlights the accelerated plant growth induced by THz waves, especially in conjunction with other environmental stressors, and the subsequent alterations in cellular homeostasis, resulting in the generation of reactive oxygen species (ROS) and an increase in brassinosteroids. Brassinosteroids are explored for their dual role as toxic by-products of stress metabolism and vital signal transduction molecules in plant responses to abiotic stresses. The paper further investigates the spatio-temporal regulation and long-distance transport of phytohormones, including growth hormone, cytokinin, and abscisic acid (ABA), which significantly influence the growth and development of P. ternata under THz wave stress. With a comprehensive review of Reactive oxygen species (ROS) and Brassinosteroid Insensitive (BRI) homeostasis and signalling under THz wave stress, the article elucidates the current understanding of BRI involvement in stress perception, stress signalling, and domestication response regulation. Additionally, it underscores the importance of spatio-temporal regulation and long-distance transport of key plant hormones, such as growth hormone, cytokinin, and ABA, in determining root growth and development under THz wave stress. The study of how plants perceive and respond to environmental stresses holds fundamental biological significance, and enhancing plant stress tolerance is crucial for promoting sustainable agricultural practices and mitigating the environmental burdens associated with low-tolerance crop cultivation.


Assuntos
Brassinosteroides , Pinellia , Brassinosteroides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pinellia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Estresse Fisiológico , Citocininas/metabolismo , Plantas/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia
9.
J Exp Bot ; 75(8): 2584-2597, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314882

RESUMO

Gray mold caused by the necrotrophic fungal pathogen Botrytis cinerea is one of the most destructive diseases in rose (Rosa spp.). Rose infection by B. cinerea leads to severe economic losses due to necrosis, tissue collapse, and rot. In rose, cytokinins (CKs) positively regulate a defense response to B. cinerea, but little is known about the underlying molecular mechanisms. Here, we characterized two ethylene/jasmonic acid-regulated transcription factors, RhEFR005 and RhCCCH12, that bind to the promoter region of PATHOGENESIS-RELATED 10.1 (RhPR10.1) and promote its transcription, leading to decreased susceptibility to B. cinerea. The RhEFR005/RhCCCH12-RhPR10.1 module regulated cytokinin content in rose, and the susceptibility of RhEFR005-, RhCCCH12-, and RhPR10.1-silenced rose petals can be rescued by exogenous CK. In summary, our results reveal that the RhERF005/RhCCCH12-RhPR10.1 module regulates the CK-induced defense response of rose to B. cinerea.


Assuntos
Citocininas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Citocininas/metabolismo , Botrytis , Doenças das Plantas/microbiologia
10.
Plant Signal Behav ; 19(1): 2318509, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38375800

RESUMO

Crabapple is a valuable tree species in gardens due to its captivating array of flower and leaf colors, rendering it a favored choice in landscaping. The economic and ornamental values of Malus crabapple are closely associated with the biosynthesis of anthocyanin, a pigment responsible for its vibrant hues. The intricate regulation of anthocyanin biosynthesis involves the concerted activity of various genes. However, the specific mechanism governing this process in crabapple warrants in-depth exploration. In this study, we explored the inhibitory role of MsMYB62-like in anthocyanin biosynthesis. We identified MsDFR and MsANS as two downstream target genes of MsMYB62-like. These genes encode enzymes integral to the anthocyanin biosynthetic pathway. The findings demonstrate that MsMYB62-like directly binds to the promoters of MsDFR and MsANS, resulting in the downregulation of their expression levels. Additionally, our observations indicate that the plant hormone cytokinins exert a suppressive effect on the expression levels of MsMYB62-like, while concurrently upregulating MsDFR and MsANS. This study reveals that the MsMYB62-like-MsDFR/MsANS module plays an important role in governing anthocyanin levels in Malus crabapple. Notably, the regulatory interplay is modulated by the plant hormone cytokinins.


Assuntos
Malus , Malus/genética , Antocianinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Curr Biol ; 34(6): 1324-1332.e6, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38295795

RESUMO

In land plants, gametes derive from a small number of dedicated haploid cells.1 In angiosperms, one central cell and one egg cell are differentiated in the embryo sac as female gametes for double fertilization, while in non-flowering plants, only one egg cell is generated in the female sexual organ, called the archegonium.2,3 The central cell specification of Arabidopsis thaliana is controlled by the histidine kinase CYTOKININ-INDEPENDENT 1 (CKI1), which is a two-component signaling (TCS) activator sharing downstream regulatory components with the cytokinin signaling pathway.4,5,6,7 Our phylogenetic analysis suggested that CKI1 orthologs broadly exist in land plants. However, the role of CKI1 in non-flowering plants remains unclear. Here, we found that the sole CKI1 ortholog in the liverwort Marchantia polymorpha, MpCKI1, which functions through conserved downstream TCS components, regulates the female germline specification for egg cell development in the archegonium. In M. polymorpha, the archegonium develops three-dimensionally from a single cell accumulating MpBONOBO (MpBNB), a master regulator for germline initiation and differentiation.8 We visualized female germline specification by capturing the distribution pattern of MpBNB in discrete stages of early archegonium development, and found that MpBNB accumulation is restricted to female germline cells. MpCKI1 is required for the proper MpBNB accumulation in the female germline, and is critical for the asymmetric cell divisions that specify the female germline cells. These results suggest that CKI1-mediated TCS originated during early land plant evolution and participates in female germ cell specification in deeply diverged plant lineages.


Assuntos
Arabidopsis , Marchantia , Marchantia/fisiologia , Filogenia , Arabidopsis/metabolismo , Transdução de Sinais , Células Germinativas/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Nat Plants ; 10(1): 180-191, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38172575

RESUMO

Cytokinins are essential for plant growth and development, and their tissue distributions are regulated by transmembrane transport. Recent studies have revealed that members of the 'Aza-Guanine Resistant' (AZG) protein family from Arabidopsis thaliana can mediate cytokinin uptake in roots. Here we present 2.7 to 3.3 Å cryo-electron microscopy structures of Arabidopsis AZG1 in the apo state and in complex with its substrates trans-zeatin (tZ), 6-benzyleaminopurine (6-BAP) or kinetin. AZG1 forms a homodimer and each subunit shares a similar topology and domain arrangement with the proteins of the nucleobase/ascorbate transporter (NAT) family. These structures, along with functional analyses, reveal the molecular basis for cytokinin recognition. Comparison of the AZG1 structures determined in inward-facing conformations and predicted by AlphaFold2 in the occluded conformation allowed us to propose that AZG1 may carry cytokinins across the membrane through an elevator mechanism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocininas/metabolismo , Arabidopsis/metabolismo , Microscopia Crioeletrônica , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Plant Cell Environ ; 47(2): 629-650, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37904283

RESUMO

Plants constantly perceive and process environmental signals and balance between the energetic demands of growth and defense. Growth arrest upon pathogen attack was previously suggested to result from a redirection of the plants' metabolic resources towards the activation of plant defense. The energy sensor Target of Rapamycin (TOR) kinase is a conserved master coordinator of growth and development in all eukaryotes. Although TOR is positioned at the interface between development and defense, little is known about the mechanisms by which TOR may potentially regulate the relationship between these two modalities. The plant hormones cytokinin (CK) and gibberellin (GA) execute various aspects of plant development and defense. The ratio between CK and GA was reported to determine the outcome of developmental programmes. Here, investigating the interplay between TOR-mediated development and TOR-mediated defense in tomato, we found that TOR silencing resulted in rescue of several different aberrant developmental phenotypes, demonstrating that TOR is required for the execution of developmental cues. In parallel, TOR inhibition enhanced immunity in genotypes with a low CK/GA ratio but not in genotypes with a high CK/GA ratio. TOR-inhibition mediated disease resistance was found to depend on developmental status, and was abolished in strongly morphogenetic leaves, while being strongest in mature, differentiated leaves. CK repressed TOR activity, suggesting that CK-mediated immunity may rely on TOR downregulation. At the same time, TOR activity was promoted by GA, and TOR silencing reduced GA sensitivity, indicating that GA signalling requires normal TOR activity. Our results demonstrate that TOR likely acts in concert with CK and GA signalling, executing signalling cues in both defense and development. Thus, differential regulation of TOR or TOR-mediated processes could regulate the required outcome of development-defense prioritisation.


Assuntos
Citocininas , Giberelinas , Giberelinas/metabolismo , Citocininas/metabolismo , Sirolimo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
14.
J Exp Bot ; 75(2): 631-641, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37688302

RESUMO

Root system architecture (RSA) influences the acquisition of heterogeneously dispersed soil nutrients. Cytokinin and C-TERMINALLY ENCODED PEPTIDE (CEP) hormones affect RSA, in part by controlling the angle of lateral root (LR) growth. Both hormone pathways converge on CEP DOWNSTREAM 1 (CEPD1) and CEPD2 to control primary root growth; however, a role for CEPDs in controlling the growth angle of LRs is unknown. Using phenotyping combined with genetic and grafting approaches, we show that CEP hormone-mediated shallower LR growth requires cytokinin biosynthesis and perception in roots via ARABIDOPSIS HISTIDINE KINASE 2 (AHK2) and AHK3. Consistently, cytokinin biosynthesis and ahk2,3 mutants phenocopied the steeper root phenotype of cep receptor 1 (cepr1) mutants on agar plates, and CEPR1 was required for trans-Zeatin (tZ)-type cytokinin-mediated shallower LR growth. In addition, the cepd1,2 mutant was less sensitive to CEP and tZ, and showed basally steeper LRs on agar plates. Cytokinin and CEP pathway mutants were grown in rhizoboxes to define the role of these pathways in controlling RSA. Only cytokinin receptor mutants and cepd1,2 partially phenocopied the steeper-rooted phenotype of cepr1 mutants. These results show that CEP and cytokinin signaling intersect to promote shallower LR growth, but additional components contribute to the cepr1 phenotype in soil.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ágar/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Hormônios/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Solo , Regulação da Expressão Gênica de Plantas , Receptores de Peptídeos/genética
15.
Plant Biotechnol J ; 22(1): 200-215, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37752705

RESUMO

Grain size is one of the important traits in wheat breeding programs aimed at improving yield, and cytokinins, mainly involved in cell division, have a positive impact on grain size. Here, we identified a novel wheat gene TaMADS-GS encoding type I MADS-box transcription factor, which regulates the cytokinins signalling pathway during early stages of grain development to modulate grain size and weight in wheat. TaMADS-GS is exclusively expressed in grains at early stage of seed development and its knockout leads to delayed endosperm cellularization, smaller grain size and lower grain weight. TaMADS-GS protein interacts with the Polycomb Repressive Complex 2 (PRC2) and leads to repression of genes encoding cytokinin oxidase/dehydrogenases (CKXs) stimulating cytokinins inactivation by mediating accumulation of the histone H3 trimethylation at lysine 27 (H3K27me3). Through the screening of a large wheat germplasm collection, an elite allele of the TaMADS-GS exhibits higher ability to repress expression of genes inactivating cytokinins and a positive correlation with grain size and weight, thus representing a novel marker for breeding programs in wheat. Overall, these findings support the relevance of TaMADS-GS as a key regulator of wheat grain size and weight.


Assuntos
Endosperma , Fatores de Transcrição , Fatores de Transcrição/genética , Endosperma/metabolismo , Triticum/metabolismo , Melhoramento Vegetal , Grão Comestível , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
16.
Plant J ; 117(1): 92-106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37738394

RESUMO

Root hairs are crucial in the uptake of essential nutrients and water in plants. This study showed that a zinc finger protein, GIS3 is involved in root hair growth in Arabidopsis. The loss-of-function gis3 and GIS3 RNAi transgenic line exhibited a significant reduction in root hairs compared to the wild type. The application of 1-aminocyclopropane-1-carboxylic acid (ACC), an exogenous ethylene precursor, and 6-benzyl amino purine (BA), a synthetic cytokinin, significantly restored the percentage of hair cells in the epidermis in gis3 and induced GIS3 expression in the wild type. More importantly, molecular and genetic studies revealed that GIS3 acts upstream of ROOT HAIR DEFECTIVE 2 (RHD2) and RHD4 by binding to their promoters. Furthermore, exogenous ACC and BA application significantly induced the expression of RHD2 and RHD4, while root hair phenotype of rhd2-1, rhd4-1, and rhd4-3 was insensitive to ACC and BA treatment. We can therefore conclude that GIS3 modulates root hair development by directly regulating RHD2 and RHD4 expression through ethylene and cytokinin signals in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inflorescência/metabolismo , Etilenos/metabolismo , Citocininas/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação
17.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38123502

RESUMO

Anthocyanins are flavonoid-like substances that play important roles in plants' adaptation to various environmental stresses. In this research, we discovered that cytokinin (CK) alone could effectively induce the anthocyanin biosynthesis in Eucalyptus and many other perennial woody plant species, but not in tobacco and Arabidopsis, suggesting a diverse role of CK in regulating anthocyanin biosynthesis in different species. Transcriptomic and metabolomic strategies were used to further clarify the specific role of CK in regulating anthocyanin biosynthesis in Eucalyptus. The results showed that 801 and 2241 genes were differentially regulated at 6 and 24 h, respectively, after CK treatment. Pathway analysis showed that most of the differentially expressed genes were categorized into pathways related to cellular metabolism or transport of metabolites, including amino acids and sugars. The metabolomic results well supported the transcriptome data, which showed that most of the differentially regulated metabolites were related to the metabolism of sugar, amino acids and flavonoids. Moreover, CK treatment significantly induced the accumulation of sucrose in the CK-treated leaves, while sugar starvation mimicked by either defoliation or shading treatment of the basal leaves significantly reduced the sugar increase of the CK-treated leaves and thus inhibited CK-induced anthocyanin biosynthesis. The results of in vitro experiment also suggested that CK-induced anthocyanin in Eucalyptus was sugar-dependent. Furthermore, we identified an early CK-responsive transcription factor MYB113 in Eucalyptus, the expression of which was significantly upregulated by CK treatment in Eucalyptus, but was inhibited in Arabidopsis. Importantly, the overexpression of EgrMYB113 in the Eucalyptus hairy roots was associated with significant anthocyanin accumulation and upregulation of most of the anthocyanin biosynthetic genes. In conclusion, our study demonstrates a key role of CK in the regulation of anthocyanin biosynthesis in Eucalyptus, providing a molecular basis for further understanding the regulatory mechanism and diversity of hormone-regulated anthocyanin biosynthesis in different plant species.


Assuntos
Arabidopsis , Eucalyptus , Antocianinas/metabolismo , Arabidopsis/genética , Eucalyptus/genética , Eucalyptus/metabolismo , Açúcares/metabolismo , Citocininas/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Tree Physiol ; 44(2)2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38123505

RESUMO

Wood formation is a complex developmental process under the control of multiple levels of regulatory transcriptional network and hormone signals in trees. It is well known that cytokinin (CK) signaling plays an important role in maintaining the activity of the vascular cambium. The CK response factors (CRFs) encoding a subgroup of AP2 transcription factors have been identified to mediate the CK-dependent regulation in different plant developmental processes. However, the functions of CRFs in wood development remain unclear. Here, we characterized the function of PtCRF1, a CRF transcription factor isolated from poplar, in the process of wood formation. The PtCRF1 is preferentially expressed in secondary vasculature, especially in vascular cambium and secondary phloem, and encodes a transcriptional activator. Overexpression of PtCRF1 in transgenic poplar plants led to a significant reduction in the cell layer number of vascular cambium. The development of wood tissue was largely promoted in the PtCRF1-overexpressing lines, while it was significantly compromised in the CRISPR/Cas9-generated double mutant plants of PtCRF1 and its closest homolog PtCRF2. The RNA sequencing (RNA-seq) and quantitative reverse transcription PCR (RT-qPCR) analyses showed that PtCRF1 repressed the expression of the typical CK-responsive genes. Furthermore, bimolecular fluorescence complementation assays revealed that PtCRF1 competitively inhibits the direct interactions between histidine phosphotransfer proteins and type-B response regulator by binding to PtHP protein. Collectively, these results indicate that PtCRF1 negatively regulates CK signaling and is required for woody cell differentiation in poplar.


Assuntos
Populus , Madeira , Citocininas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Floema/metabolismo , Regulação da Expressão Gênica de Plantas , Populus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
19.
FASEB J ; 38(1): e23366, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102957

RESUMO

Cytokinins (CKs) are a class of growth-promoting signaling molecules that affect multiple cellular and developmental processes. These phytohormones are well studied in plants, but their presence continues to be uncovered in organisms spanning all kingdoms, which poses new questions about their roles and functions outside of plant systems. Cytokinin production can be initiated by one of two different biosynthetic enzymes, adenylate isopentenyltransfases (IPTs) or tRNA isopentenyltransferases (tRNA-IPTs). In this study, the social amoeba, Dictyostelium discoideum, was used to study the role of CKs by generating deletion and overexpression strains of its single adenylate-IPT gene, iptA. The life cycle of D. discoideum is unique and possesses both single- and multicellular stages. Vegetative amoebae grow and divide while food resources are plentiful, and multicellular development is initiated upon starvation, which includes distinct life cycle stages. CKs are produced in D. discoideum throughout its life cycle and their functions have been well studied during the later stages of multicellular development of D. discoideum. To investigate potential expanded roles of CKs, this study focused on vegetative growth and early developmental stages. We found that iptA-deficiency results in cytokinesis defects, and both iptA-deficiency and overexpression results in dysregulated tricarboxylic acid (TCA) cycle and amino acid metabolism, as well as increased levels of adenosine monophosphate (AMP). Collectively, these findings extend our understanding of CK function in amoebae, indicating that iptA loss and overexpression alter biological processes during vegetative growth that are distinct from those reported during later development.


Assuntos
Dictyostelium , Dictyostelium/genética , Citocinese , Citocininas/genética , Citocininas/metabolismo , RNA de Transferência/metabolismo , Aminoácidos/metabolismo
20.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139361

RESUMO

In potatoes, tuber secondary growth, especially sprouting, deforms the tubers and severely lowers their commercial value. Tuber sprouting is induced by signal substances, such as gibberellin (GA), which are transported to the tuber from the plant body. The molecular mechanism underlying GA-induced sprouting remains ambiguous. Here, we tried to recreate tuber secondary growth using in vitro stemmed microtubers (MTs) (with the nodal stem attached) and MT halves (with the nodal stem entirely removed). Our experiments showed that GA alone could initiate the sprouting of stemmed microtubers; however, GA failed to initiate MT halves unless 6-benzyladenine, a synthetic cytokinin CK, was co-applied. Here, we analyzed the transcriptional profiles of sprouting buds using these in vitro MTs. RNA-seq analysis revealed a downregulation of cytokinin-activated signaling but an upregulation of the "Zeatin biosynthesis" pathway, as shown by increased expression of CYP735A, CISZOG, and UGT85A1 in sprouting buds; additionally, the upregulation of genes, such as IAA15, IAA22, and SAUR50, associated with auxin-activated signaling and one abscisic acid (ABA) negative regulator, PLY4, plays a vital role during sprouting growth. Our findings indicate that the role of the nodal stem is synonymous with CK in sprouting growth, suggesting that CK signaling and homeostasis are critical to supporting GA-induced sprouting. To effectively control tuber sprouting, more effort is required to be devoted to these critical genes.


Assuntos
Citocininas , Solanum tuberosum , Citocininas/metabolismo , Solanum tuberosum/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Perfilação da Expressão Gênica , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Tubérculos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...